SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY

SAULT STE. MARIE, ON

COURSE OUTLINE

COURSE TIT	LE: INDUSTR	IAL ELECTRONI	CS	
CODE NO.:	ELN 213 - 4	l	SEMESTER:	THREE
PROGRAM:	M: ELECTRICAL/ELECTRONIC TECHNICIAN/TECHNOLOGY			
AUTHOR:	WALLY FILIPC	WICH		
DATE: AUGU	IST, 1993	PREVIOUS	OUTLINE DATED:	AUGUST, 1991

APPROVED:

DEAN

DATE

INDUSTRIAL ELECTRONICS COURSE NAME ELN 213-4 CODE NO.

TOTAL CREDIT HOURS 60 HRS.

PREREQUISITE(S): ELN 109 -- ELECTRONIC CIRCUITS

I. PHILOSOPHY/GOALS:

To provide a detailed study of electronic timing, switching, trigger and control devices and circuits, together with their applications in industry.

II. STUDENT PERFORMANCE OBJECTIVES:

Upon successful completion of this course the student will:

- 1) Understand RC Timing Circuits, basic relays, switching circuits and Digital circuits.
- 2) Understand the concepts of optoelectronic devices
- 3) Understand the operation and application of Trigger Devices
- 4) Understand the operation and application of Control Devices
- 5) Test, analyze, troubleshoot circuits using the devices covered

III. TOPICS TO BE COVERED:

- 1) Timing, Switching, Relay and Digital Circuits
- 2) Optoelectronic Devices
- 3) Operational Amplifiers
- 4) Solid-State Trigger Devices
- 5) Thyristor (PNPN) Control Devices

- 2 -

LEARNING ACTIVITIES **REQUIRED RESOURCES** IV. Textbook-Industrial Solid-state 1) SWITCHING, TIMING, RELAY AND DIGITAL CIRCUITS Electronics -CHAPTERS 1 & 2 a) Transistor switching circuits b) RC time delay circuits Textbook-Introductory Electronic Devices and Circuits c) Relay operation and SSR's -CHAPTER 18 d) Relay, solid-state and digital logic circuits e) Operation, application, Textbook-Fundamentals of Electric testing, analyses and Circuits troubleshooting of industrial -CHAPTERS 16 & 19 control circuits. Instructor Handouts as required 2) OPTOELECTRONICS Textbook-Industrial Solid-State Electronics -CHAPTER 11 a) Fundamentals of light b) Photoelectric devices - photovoltaic cell Textbook-Introductory Electronic - photoconductor Devices and Circuits - photoemissive tube c) Photoconductive sensors Instructor Handouts as required - photo diode - photo transistors - photo IC's d) Light emitters - LED's - IRED's - LASERS - LCD's - Nixie Tubes - Alphanumeric displays e) Photocouplers f) Fibre optics g) Application of optoelectronic devices in industrial control 3) OPERATIONAL AMPLIFIERS Textbook-Industrial Solid State Electronics a) OPAMPS - Construction, -CHAPTER 8 operation, characteristics and specifications Textbook-Introductory Electronic b) OPAMP circuits, amplifiers, Devices and Circuits comparators, adders and -CHAPTER 12, 14 & 16 subtracters, converters (voltage/current) Instructor Handouts as required

- 3 -

IV		LEARNING ACTIVITIES	REQUIRED RESOURCES			
4)	SO	LID STATE TRIGGER DEVICES	Textbook-Industrial Solid State Electronics			
	a)	Operation, characteristics, specifications testing and	-CHAPTER 4,5 & 6			
		application - four layer diode	Textbook-Introductory Electronic Devices and Circuits			
		 unijunction transistor (UJT) DIAC 	-CHAPTER 19			
		- SUS, SBS, PUT UJT relaxation oscillator	Instructor Handouts as required			
	C)	The 555 timer - operation and application				
5)	TH	YRISTOR (PNPN) CONTROL DEVICES				
		Latching devices Silicon controlled rectifier				
) (d	- theory and operation - gate characteristics and				
		- AC/DC load control (Half				
		& Full Wave) - phase shift control				
	C)	- ŪJT/SCR control circuits Triacs				
	,	 theory, operation, characteristics and 				
		application - critical rate of rise				
		Other thyristor devices - LASCR, GCS, SCS, GTO				
	e)	DC motor speed control systems				
	armature voltage and current - DC motor speed control systems					

- 4 -

ELN 213-4 CODE NO.

INDUSTRIAL ELECTRONICS COURSE NAME

V. EVALUATION METHODS: (INCLUDES ASSIGNMENTS, ATTENDANCE REQUIREMENTS, ETC.)

Assessments will consist of major tests and quizzes for approximately 50% of the overall mark.

Practical tests, lab quizzes, log book, oral and written assignments, and general lab assessment will make up approximately 40% of the overall mark. (Lab attendance is compulsory)

A subjective evaluation based on attendance, participation proffessional work ethic and the demonstrated ability to use test equipment will comprise approximately 10%.

The student must successfully pass both portions to achieve a passing grade.

The following grades will be assigned to students in postsecondary programs:

- A+ Consistently outstanding (> 90%)
- A Outstanding achievement (80% to 89%)
- B Consistently above average achievement (70% to 79%)
- C Satisfactory or acceptable achievement in all areas subject to assessment (55% to 69%)
- R Repeat -- The student has not achieved the objectives of the course and the course must be repeated
- X A temporary grade, limited to situations with extenuating circumstances, giving a student additional time to complete course requirements

VI. REQUIRED STUDENT RESOURCES

- Text -- Industrial Solid-State Electronics (2nd ed) by T. J. Maloney (Prentice-Hall)
 - -- Introductory Electronic Devices & Circuits by R.T. Paynter (Prentice-Hall)
 - -- 100 pg. Spiral-bound Navy Blue Science Notebook (Available in Campus Shop)
- 2) Protoboard
- 3) Lab Log Book

- 5 -

VII. SPECIAL NOTES

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.